Institut für Festkörperphysik

Abteilung Atomare und Molekulare Strukturen

Vortragsankündigung

Montag, den 03.07.2023 um 14:00 Uhr Seminarraum 001 Schneiderberg 39 (LNQE)

spricht

Prof. Jungwon Kim

(Korea Advanced Institute of Science and Technology - KAIST)

zum Thema

"It is the perfect timing for optical frequency combs: from clocking CMOS chips to imaging blackholes "

Institut für Festkörperphysik

Abteilung Atomare und Molekulare Strukturen

Abstract

Optical frequency combs, with their unique features in both the time and frequency domains, have transformed precision science and engineering over the last two decades. In this talk, I will present on our latest progress in the ultralow-noise frequency combs and their applications in precision timing and microwave photonics. My research group has been at the forefront of the development of ultralow-noise optical frequency comb sources, including mode-locked fiber lasers and chip-scale microresonator-based combs (micro-combs) with quantum-limited timing jitter [1,2]. We further showed how to stabilize the timing of such comb sources with compact and robust fiber photonic methods [3,4]. Based on such ultralow-noise, compact and robust comb sources, we have pioneered innovative timing applications such as attosecond electronic pulse timing [5], on-chip clock distribution networks [6], ultrafast and subnm-precision time-of-flight sensors [7] and 3D dynamic imaging [8]. I will also present our currently on-going progress in microwave/mm-wave signal generation and distribution for radio astronomy [9] and timedomain metrology of ultrahigh-dynamic-range micro/nano mechanics [10]. I will also review the frequency comb-based timing distribution and synchronization methods via fiber links [11].

[1] J. Kim et al, "Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status and applications," Adv. Opt. Photon. 8, 465-540 (2016).

[2] D. Jeong et al, "Ultralow-jitter silica microcomb," Optica 7, 1108-1111 (2020).

[3] D. Kwon et al, "Generation of multiple ultrastable optical frequency combs from an all-fiber photonic platform," Sci. Adv. 6, eaax4457 (2020).

[4] D. Kwon et al, "Ultrastable microwave and soliton-pulse generation from fibre-photonic-stabilized microcombs," Nature Commun. 13, 381 (2022).

[5] M. Hyun et al, "Attosecond electronic timing with rising edges of photocurrent pulses," Nature Commun. 11, 3667 (2020).

[6] M. Hyun et al, "Femtosecond-precision electronic clock distribution in CMOS chips injected by frequency comb-extracted photocurrent pulses," Nature Commun. 14, 2345 (2023).

[7] Y. Na et al, "Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection," Nature Photon. 14, 355-360 (2020).

[8] Y. Na et al, "Massively parallel electro-optic sampling of spaceencoded optical pulses for ultrafast multi-dimensional imaging," Light Sci. Appl. 12, 44 (2023).

[9] M. Hyun et al, "Optical frequency comb-based generation and distribution of ultralow-noise radio-frequency single-tone and comb signals at a very long baseline interferometry (VLBI) radio telescope," in preparation.

[10] Y. Na et al, "Time-domain metrology of ultrahigh-dynamic-range micro/nano mechanics," in preparation.

[11] J. Kim et al, "Drift-free femtosecond timing synchronization of remote optical and microwave sources," Nature Photon. 2, 733 (2008).