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1 Introduction

Solar cells convert optical energy into electrical energy by photogeneration. The efficiency of this
process depends, among other things, on the wavelength of the incident light and semiconductor
properties such as charge carrier recombination rates. The quantum efficiency describes the probability
that an incident photon is converted into an electron-hole pair, which contributes to the electrical
current generated by the solar cell. Thus, quantum efficiency measurements quantify both absorption
and recombination and are therefore widely used for solar cell characterization. In this experiment,
you will analyze the quantum efficiency of various silicon solar cells.

2 Remarks concerning the experiment and its evaluation

• Read this instruction manual beforehand. The understanding of the theory outlined in this manual
will help you carry out and evaluate the experiment.

• At the beginning, we will talk about the basics of the experiment in order to see whether you have
a basic understanding. You can also ask further questions if anything is unclear.

• Before you start with the experiment, read the entire instruction manual and think about which
measurements are required in order to answer the evaluation questions. It is advisable to plan your
experiments in advance.

• For carrying out the experiment, you can use our measurement setup as well as two computers with
software for data evaluation. It is advisable to start evaluating the measurement results already
while you are in the lab.

• If you need informations for conducting and evaluating the experiment that are not contained in
this manual, please have a look at the literature, e.g., papers which are cited in this manual.

• Please indicate substantiated estimates for measurement uncertainties for all analyzed quantities.
For this purpose, please state the uncertainties you assume for the measured quantities and the
relations you use for the estimation of the uncertainty of derived quantities.

• Please ask your supervisor if anything is unclear or if you need help with the measurement setup.

• Having finished the experiment, please hand in two documents:

1. A lab protocol containing all relevant parameters and settings you used during the experiment.
The lab protocol should not answer the questions given in this manual but document the
conducted measurements completely and comprehensible. The criterion for “completely and
comprehensible” is: Using the lab protocol, it must be possible to repeat the experiment under
equal conditions and to reproduce the measurement results.

2. In addition to the lab protocol, please compose a report containing: An introduction (also
summarizing the basic theory of the experiment), the results of your measurements and a
discussion of the results. The report should answer the questions given in this manual; however,
a simple listing of questions and answers is not appropriate. Please write a structured text and
choose own headings.

3 Basics

3.1 Silicon solar cells

Figure 1a shows the structure of a typical p-type industrial Al-BSF (aluminum back surface field)
silicon solar cell with electrical contacts on both sides. The thickness of such a solar cell is approx-
imately 160 µm. In this example, the solar cell mainly consists of a p-doped silicon wafer. At the
front surface, an emitter (n-doped) and metal fingers are added in order to realize the front contact
and the pn-junction. The rear surface is fully metalized. By a high temperature step, a portion of
the aluminum diffuses into the silicon and creates a highly p-doped region (BSF), which acts as rear
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Fig. 1: Structure of a typical Al-BSF silicon solar cell (top) and a typical PERC silicon solar cell
(bottom).

surface passivation. The drawing is not to scale: The emitter thickness is of the order of a few hun-
dred nanometers, the rear surface metallization has a thickness of 10− 20 µm and the Al-BSF has a
thickness of a few microns. In the following, we will only consider the base region with a thickness of
approximately W .
Figure 1b shows a typical PERC (passivated emitter and rear cell) solar cell, which is an advanced cell
concept that currently enters mass production. PERC solar cells feature a dielectric rear layer, which
improves the rear surface passivation and enhances the rear surface reflection. Thereby, electrical as
well as optical losses are reduced. The dielectric layer is locally opened in order to realize the rear
contact.
Solar cells have a huge lateral extent compared to their thickness: Typical industrial solar cells have
an edge length of 15.6 mm. This structure leads to nearly vertical current flows within the solar cell.
For this reason, a one-dimensional description of physical effects is sufficient in the following.
In our example, the base region is p-type doped, which means that the semiconductor is artificially con-
taminated with group 3 atoms, which have 3 valence electrons, whereas silicon has 4 valence electrons.
Hence, these atoms are able to ”‘accept”’ another electron and are therefore denoted as acceptors. In
a band diagram as shown in Fig. 2, the acceptors add energy states slightly above the valence band
edge within the forbidden band gap. At room temperature, electrons are thermally excited into these
states, leaving holes in the valence band. The hole concentration is then approximately equal to the
acceptor concentration NA. Hence, in the dark, there are lots of holes, but only very few electrons in
the base. The holes are therefore called majority charge carriers. Correspondingly, the electrons are
the minority charge carriers. The equilibrium concentrations of electrons and holes are denoted by n0

and p0, respectively. They are connected by the law of mass action,

n p = n2
i , (1)

where ni ≈ 1010 cm−3 [1]. For our example, we thus have p0 ≈ NA and n0 ≈ n2
i /NA.

3.2 Absorption of light in crystalline silicon

The absorption of light in crystalline silicon is described by the common Lambert-Beer law

Φ(λ, z) = Φ0(λ) exp
(
− α(λ)z

)
(2)
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Fig. 2: Band diagram of crystalline silicon.

where Φ0 is the initial photon flux, α is the absorption coefficient and Φ(z) the photon flux after a
distance z. Figure 3 depicts the absorption coefficient of crystalline silicon as a function of wave-
length. Additionally, the figure shows the spectral distribution AM1.5G [2], which is the standard
solar spectrum used for measurements in photovoltaics.
Crystalline silicon has a bandgap energy of 1.12 eV, which corresponds to a wavelength of approxi-
mately 1150 nm. This wavelength is also denoted as absorption edge. Above this wavelength, i.e., at
photon energies below the bandgap energy, we observe a steep decrease of the absorption coefficient.
The shoulders which are visible in the wavelength range above 1150 nm are due to absorption processes
assisted by one or more phonons [3].
From Fig. 3, it is obvious that the relevant wavelength range for the operation of crystalline silicon
solar cells is between approximately 300 nm and 1200 nm. In this wavelength range, the absorption
coefficient varies by over six orders of magnitude. The absorption length

Lα(λ) =
1

α(λ)
(3)

is a measure for the penetration depth of light within the solar cell. At 300 nm, the absorption length
is about 6 nm, which means that after a penetration depth of 6 nm, the initial intensity is decreased
by a factor of 1/e ≈ 0.37 and all light is absorbed close to the front surface. At 1100 nm, however, the
absorption length is about 3 mm. Compared to a typical thickness of silicon solar cells of 160 µm, it
is obvious that the incident light is not only able to reach the rear surface, but it can also be reflected
internally several times before being absorbed.

3.3 Generation and collection of excess charge carriers

Under illumination, excess charge carriers are generated by optical excitation of electrons from the
valence band to the conduction band. The concentration of excess electrons and holes are denoted
by ∆n and ∆p, respectively. Since each excited electron leaves a hole in the valence band, ∆n = ∆p
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Fig. 3: Absorption coefficient of crystalline silicon (from [4]).

holds. The excess charge carrier concentrations add to the equilibrium concentrations. The overall
charge carrier concentrations are therefore

n = n0 + ∆n , (4)

p = p0 + ∆p . (5)

If the concentration of excess majority charge carriers is small compared to their equilibrium con-
centration, one speaks of low level injection. For a p-type semiconductor as considered above, this
means

n ≈ ∆n (because n0 ≈ 0), (6)

p ≈ p0 (because ∆p� p0). (7)

The rate of charge carrier generation g0(z) is given by the negative change of the photon flux:

g0(λ, z) = −dΦ(λ, z)

dz
. (8)

For instance, at short wavelengths where internal reflections can be neglected, the charge carrier
generation rate is g0(z) = (1−R) Φ0 α exp(−αz), where R is the reflectance of the solar cell.
Charge carriers move in the solar cell mainly by diffusion and will recombine after a certain period of
time, which is denoted as charge carrier lifetime τ . In order to obtain an electrical current, electrons
and holes must be separated from each other. This is achieved by charge carrier selective contacts,
which have a high conductivity for one charge carrier species and a low conductivity for the other
species. Hence, in order to be separated, charge carriers need to diffuse to the respective contact
before recombining. The lifetime defines the diffusion length

L =
√
D τ (9)

which a charge carrier is able to travel before recombining. In the latter equation, D is the diffusion
constant, which is a material property.
The probability that a minority charge carrier diffuses to the minority contact before recombining is
denoted as collection probability ηc. It depends on the position of charge carrier generation z and
on the recombination properties of the device. Under low level injection conditions, recombination is
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Fig. 4: Collection efficiency ηc according to Eq. (10) for different diffusion lengths
L.

always limited by the minority charge carrier concentration. In the p-type semiconductor considered
above, holes are plenty, but each recombination process also requires an electron and there are only
few. The collection probability in the base region of a solar cell can then be expressed as [5–7]

ηc(z) = cosh
( z
L

)
− L

Leff
sinh

( z
L

)
, (10)

where

Leff = L
LS sinh(W/L) +D cosh(W/L)

LS cosh(W/L) +D sinh(W/L)
(11)

is the effective diffusion length which depends on the thickness W of the solar cell and the rear surface
recombination velocity S. Figure 4 depicts the collection efficiency according to Eq. (10) for different
diffusion lengths L.

3.4 Short circuit current and external quantum efficiency

The short circuit current density jsc (short circuit current per area A of the solar cell) follows from the
charge carrier generation rate and the collection probability for generated charge carriers by integrating
over the thickness of the solar cell :

jsc = q

∫ ∞
0

dλ

∫ W

0
dz g0(λ, z) ηc(z) . (12)

Equation (12) can be rewritten as

jsc = q

∫ 1200 nm

300 nm
dλΦ0(λ)

∫ W

0
dz g(λ, z) ηc(z) (13)

with the normalized generation rate

g(λ, z) =
g0(λ, z)

Φ0(λ)
(14)

according to Eq. (8) and by restricting the integration to the relevant wavelength range, where the
integrand is significantly larger than zero. The last terms in the latter equation represent the external
quantum efficiency

EQE(λ) =

∫ W

0
dz g(λ, z) ηc(z) (15)
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Fig. 5: Typical external quantum efficiency and reflection of a silicon solar cell
featuring an anti-reflection coating.

of the solar cell. Hence, the short circuit current density can finally be expressed as

jsc =

∫ 1200 nm

300 nm
dλ jgen(λ), (16)

where

jgen(λ) = qΦ0(λ)EQE(λ) (17)

is the short circuit current density contribution by light of wavelength λ. Under standard testing
conditions (STC), which require the use of the AM1.5G spectral distribution, Φ0 is given by ΦSTC.
Note that the EQE is a dimensionless quantity.
Figure 5 shows the external quantum efficiency and reflection of a typical crystalline silicon solar cell
featuring an anti-reflection coating (ARC). At wavelengths around 300 nm, all light is absorbed within
the ARC and the emitter. The high recombination rates in these regions of the solar cell lead to a
small collection efficiency and thus to a small EQE. The EQE increases towards unity for larger
wavelengths, where the reflection of the solar cell is approximately zero due to the ARC and all light is
absorbed within the solar cell, mainly within the base region, where the collection efficiency is around
unity. (Note that the remaining reflection of a few percent, which is visible in Fig. 5, is due to the
reflection of the front surface metallization.) Above 600 nm, we observe a slight decrease of the EQE
due to a slight increase of R. Above 1000 nm, the absorption decreases strongly, which leads to a
decreasing EQE. The steep increase of the reflection is a consequence of the weak absorption at these
wavelengths, which leads to a contribution to the overall reflection from the rear surface.

3.5 Experimental assessment of the external quantum efficiency

From Eq. (17), we see that the EQE, which is the ratio of the numbers of generated charge carriers
Nph and incident photons Nph, can in principle be assessed experimentally by using the relation

EQE(λ) =
Nel

Nph
=

jsc(λ)

qΦ0(λ)
, (18)

i.e., by measuring the incident photon flux (photons per area and time, in units of 1/(s m2) ) and
the short circuit current density (current per area, in units of A/m2 ) of the solar cell when the solar
cell is illuminated by monochromatic light. In order to determine the EQE under standard testing
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conditions, EQESTC, the use of the AM1.5G spectral distribution is required for defining the injection
conditions of the solar cell. Hence, the determination of the EQE under STC actually requires an
illumination with white light and the determination of jgen(λ) at the same time.
In order to realize this condition experimentally, a differential measurement is carried out as depicted
in Fig. 6. The solar cell is illuminated with white light featuring a spectral distribution similar to
the AM1.5G distribution. This white light is also denoted as bias light, as it determines the injection
conditions of the solar cell. Additionally, the solar cell is illuminated by modulated monochromatic
light of low intensity and wavelength λ and the resulting change ∆jsc(λ) is measured. This yields the
differential EQE, from which the EQE under STC is calculated as described in the next section.

4 Measuring the external quantum efficiency

The (differential) external quantum efficiency cannot be measured directly. Instead, the (differential)
spectral responsivity is determined, from which the external quantum efficiency is calculated in a second
step. This procedure and its experimental realization is explained in the following.

4.1 Experimental setup

Figure 7 shows a schematic drawing of the measurement setup. The solar cell is placed on a tempera-
ture controlled chuck, where it is fixed by applying a vacuum. The halogen lamp above the solar cell
provides the bias light. Its intensity can be regulated by adjusting the lamp current. The monochro-
matic light is provided by either a xenon lamp (λ < 430 nm) or a halogen lamp (λ ≥ 430 nm) in
combination with a grating monochromator. A chopper wheel is used to modulate the monochromatic
light, which is then guided onto the solar cell by a mirror. A transimpedance amplifier (TIA) keeps
the solar cell at short circuit conditions and provides a voltage signal which is proportional to the cell’s
current. A lock-in amplifier (LIA) extracts the modulated part of the signal and provides an output
signal which is proportional to the change of the short circuit current ∆Isc of the solar cell. A second
LIA is connected to a monitor photodiode, which is used to take variations of the irradiance over time
into account.

4.2 Determination of the differential spectral responsivity

The differential spectral responsivity (DSR) s̃(λ) is the ratio of the short circuit current density varia-
tion ∆jsc of the solar cell when illuminated with bias light of irradiance Ebias and additional monochro-
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matic light of wavelength λ:

s̃(λ,Ebias) =
∆jsc

∆Eλ(λ)
. (19)

In Eq. (19), ∆Eλ is the irradiance variation of the monochromatic light (in units of W/m2 ). The
DSR thus has units of A m2/W and can be measured directly by illuminating the solar cell while it is
kept under short circuit conditions.
In order to determine the DSR curve of the test cell, s̃test(λ,Ebias), the setup needs to be calibrated
with respect to ∆Eλ and Ebias. This is done by using a reference solar cell, whose DSR s̃ref(λ,Ebias)
is known from a primary calibration. Before analyzing the test cell, the reference cell is mounted and
the output signal of the LIA

Sref(λ) = Cref ∆jsc,ref(λ) (20)

is acquired. The factor Cref in the latter equation is a proportionality factor, which takes the conversion
of ∆jsc into a voltage signal by the TIA and the subsequent measurement by the LIA into account.
This factor is of the order of unity, but its exact value depends on the TIA and is generally unknown.
Note that ∆jsc,ref is therefore unknown as well, as only Sref can be acquired. Afterwards, the test cell
is mounted and

Stest(λ) = Ctest ∆jsc,test(λ) (21)

is acquired. Again, Ctest and ∆jsc,test are unknown. Moreover, since the amplification factor of the TIA
depends on the specific solar cell which is connected, Cref and Ctest have different values in general.
Finally, the ratio of Stest and Sref is multiplied with s̃ref , giving

Stest(λ)

Sref(λ)
s̃ref(λ) =

Ctest ∆jsc,test(λ)

Cref ∆jsc,ref(λ)

∆jsc,ref(λ)

∆Eλ(λ)
=
Ctest

Cref
s̃test(λ) (22)

according to Eqs. (19) through (21). In order to compensate for variations of the irradiance Eλ over
time, which would affect ∆jsc and thereby S, the irradiance is monitored by a photodiode, which is
also connected to a LIA and yields the signal Smon. The signals Sref and Stest are then divided by the
monitor signal, giving

Rref(λ) =
Sref(λ)

Smon(λ)
, (23)

Rtest(λ) =
Stest(λ)

Smon(λ)
. (24)

The final equation for calculating the differential spectral responsivity of the test cell is thus

s̃test(λ) =
Rtest(λ)

Rref(λ)

Cref

Ctest
s̃ref(λ) . (25)
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In this equation, the ratio Cref/Ctest is unknown and can be regarded as a scaling factor for s̃test,
which is therefore denoted as relative DSR. There are several options for the determination of the
scaling factor. One option, which will be used for the evaluation of your measurements, is described
in section 4.4.

4.3 Determination of the spectral responsivity

Basically, the spectral responsivity under STC, sSTC, is obtained by integration of the differential
spectral responsivity s̃ over Ebias up to an irradiance of 1000 W/m2 as defined in the standard testing
conditions:

sSTC,test(λ) =

∫ 1000 W/m2

0
dEbias s̃test(λ,Ebias) . (26)

However, using this relation requires measuring the DSR for various bias irradiances Ebias for each
wavelength λ (this is the so-called “complete DSR procedure”), which is a time-consuming task that is
practicable only if the measurement setup is fully automated. The IEC 60904-8 standard [8] therefore
defines four simplifications to the complete DSR procedure, which allow for an approximate deter-
mination of the SR with less effort. One simplification, which we will use in this experiment, is the
measurement of the DSR using an irradiance of about 300 W/m2. In this case, the DSR is approxi-
mately equal to the SR under STC for typical silicon solar cells [9], i.e., s̃(λ)|300 W/m2 ≈ sSTC(λ) can
be used as an approximation. Figure 8 depicts a typical bias ramp measurement for silicon solar cells
and visualizes the approximation.

4.4 Calculation of the external quantum efficiency

From the SR, the EQE is obtained by multiplication with the photon energy Ephot, which is

Ephot(λ) =
h c

λ
, (27)

and division by the elementary charge q and the area A of the solar cell:

EQE(λ) = sSTC(λ)
h c

q Aλ
. (28)

In the latter equations, c is the speed of light in vacuum and h is the Planck constant.
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The EQE which is determined according to Eq. (28) will usually not fulfill Eq. (12) since it contains
the factor Cref/Ctest, which is unequal to unity in general. It is thus a relative EQE, which needs to
be scaled in order to obtain the absolute EQE that is to be determined. A common procedure for the
determination of the required scaling factor fsc is the comparison of jsc calculated according to Eqs.
(16) and (17) to jsc,exp as determined experimentally with a sun simulator:

fsc =
jsc,exp

jsc,calc
=

jsc,exp

q
∫ 1200 nm

300 nm dλΦ0(λ)EQE(λ)
. (29)

Multiplication of the relative EQE with fsc then yields the absolute EQE.

5 Operation of the measurement setup

Please read this information carefully in order to ensure a safe operation of the measurement setup and
a successful conduction of the experiment. If you have any questions during the experiment, please
ask your supervisor!

5.1 Safety instructions

• The bias lamp becomes hot during operation. Touching the lamp can cause burns.

• The TIA is a very sensitive device. Always switch off before contacting or decontacting a
sample! Otherwise, the TIA might be destroyed.

• Please handle all samples with care and wear gloves.

• The manipulator for contacting the samples is a sensitive device. Handle with care!

• Long hair could get into the chopper wheel, which may lead to serious injuries. Therefore, make
sure that the cover is mounted before turning on the measurement setup.

5.2 Turning the setup on and off

Please follow the separate instruction manuals which are available in the lab for turning the setup on
and off.

5.3 Conducting measurements

The measurement setup is controlled by a computer program, which also allows to acquire and save
measurement data. Please follow the separate instruction manuals for the computer program, which
are available in the lab.

6 Experiments

This experiment is divided into three parts: In the first part, you will familiarize yourself with the
measurement setup and derive suitable measurement parameters. In the second part, you will mea-
sure the quantum efficiency of various solar cells. The third part focuses on the evaluation of your
measurement results using physical models.

6.1 Determination of measurement parameters

In order to perform reliable measurements, it is important to know the properties of the measurement
setup and to derive suitable measurement parameters. Please examine the following issues:

1. In order to be able to carry out DSR measurements with a bias irradiance of 300 W/m2, a calibra-
tion of the power supply for the bias lamp is required. Please determine the relation between set
voltage and bias irradiance using the reference solar cell. Is a waiting time required when changing
the set voltage?
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2. The monochromatic light is provided by a xenon and a halogen lamp. Please analyze whether
a warm-up time is required for these lamps in order to achieve a stable output signal. For this
purpose, set the monochromator wavelength to 350 nm, light the xenon lamp and monitor the
output signal of the lock-in amplifier. Afterwards, repeat the procedure for the halogen lamp at a
wavelength of 550 nm.

3. Please analyze the impact of the positioning of reference and test cell when measuring the DSR of
the test cell. For this purpose, try a few lateral and vertical positions for the test cell apart from
its correct position, calculate the resulting DSR curves and compare them.

4. Please analyze the measurement noise by performing repeated measurements (N ≥ 25) for the
reference cell and one test cell of your choice at distinct wavelengths, e.g., every 100 nm.

5. Please analyze the stability of the measurement setup over time. For this purpose, please perform a
measurement of the output signal for the reference solar cell several times on different days during
your experiment and compare the results. Note: For analyzing the temporal stability, it is sufficient
to consider the output signal of the lock-in amplifier. It is not necessary to perform complete DSR
measurements for a test cell.

From these measurements, please determine suitable parameters for the measurements in the next
section and discuss your results with your supervisor before continuing. Please include the discussion
of these results in your report.

6.2 EQE analysis

1. Please determine the EQE of the test cells that your supervisor will give you at a temperature of
25 ◦C.

2. Please choose one test cell and determine the temperature dependence of the EQE in the temper-
ature range from 15 ◦C to 40 ◦C.

3. Please choose an Al-BSF cell and a PERC cell and measure bias ramps at 350 nm, 550 nm, 850 nm,
1000 nm and 1100 nm, i.e., for these wavelengths, determine the DSR as a function of Ebias between
0 and 1000 W/m2.

6.3 Evaluation of measurements

• Bundle your results concerning measurement noise, temporal stability of the measurement setup
and positioning accuracy into an estimate of a typical uncertainty for your EQE measurements.
Please substantiate your estimation by an appropriate analysis of your measurement data and by
indicating the formulas you use for determining the uncertainty of the EQE.

• Please plot and compare the EQEs of the different test cells. Scale the EQEs according to Eq. (29)
using the given jsc values for the solar cells and the tabulated AM1.5G spectrum. Note: It might
be necessary to perform a linear interpolation of your EQE data.

• Explain the shape of the EQE qualitatively. Please include the uncertainty you determined in the
previous step in your discussion.

• Compare and discuss the EQEs of the Al-BSF and the PERC cell in the near-infrared region and
explain the differences.

• Determine the temperature coefficient of the EQE and explain it. Hint: Have a look at reference
10.

• Bias ramps allow to determine the linearity of solar cells with respect to short circuit current
generation: For a linear solar cell, the DSR is independent from the bias irradiance, i.e., s̃(Ebias)
is constant. Please analyze the linearity of the Al-BSF and the PERC cell for the different wave-
lengths you investigated and consider the measurement uncertainties you determined. Are there
any nonlinearities and do the EQE measurements allow to assign them to a certain region of the
solar cell?
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