Zeige Ergebnisse 441 - 460 von 1175
2017
Witteck, R., Schulte-Huxel, H., Veith-Wolf, B., Vogt, M. R., Kiefer, F., Köntges, M., Peibst, R., & Brendel, R. (2017). Reducing UV induced degradation losses of solar modules with c-Si solar cells featuring dielectric passivation layers. In 2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017 (S. 1366-1370). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/PVSC.2017.8366019
Witteck, R., Veith-Wolf, B., Schulte-Huxel, H., Morlier, A., Vogt, M. R., Köntges, M., & Brendel, R. (2017). UV-induced degradation of PERC solar modules with UV-transparent encapsulation materials. Progress in Photovoltaics: Research and Applications, 25(6), 409-416. https://doi.org/10.1002/pip.2861
Witteck, R., Min, B., Schulte-Huxel, H., Holst, H., Veith-Wolf, B., Kiefer, F., Vogt, M. R., Köntges, M., Peibst, R., & Brendel, R. (2017). UV radiation hardness of photovoltaic modules featuring crystalline Si solar cells with AlOx/p+-type Si and SiNy/n+-type Si interfaces. Physica Status Solidi - Rapid Research Letters, 11(8), Artikel 1700178. https://doi.org/10.1002/pssr.201700178
Wollbrink, A., Rüscher, C. H., Volgmann, K., Koch, J., Breuksch, A., Tegenkamp, C., & Caro, J. (2017). Improved hydrogen selectivity of Surface Modified Graphite (SMG) membranes: Permeation experiments and characterisation by micro-Raman spectroscopy and XPS. Journal of membrane science, 528, 316-325. https://doi.org/10.1016/j.memsci.2016.12.067
Wolter, S. J., Geisler, D., Hensen, J., Köntges, M., Kajari-Schröder, S., Bahnemann, D. W., & Brendel, R. (2017). Empirical model predicting the layer thickness and porosity of p-type mesoporous silicon. Semiconductor Science and Technology, 32(4), Artikel 045007. https://doi.org/10.1088/1361-6641/aa5bb7
The LIGO Scientific Collaboration, Allen, B., Danzmann, K., Heurs, M., Lück, H., Steinmeyer, D., Willke, B., Wittel, H., Aufmuth, P., & Krüger, C. (2017). Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Physical Review D, 95(6), Artikel 062003. https://doi.org/10.1103/PhysRevD.95.062003, https://doi.org/10.15488/12010
The LIGO Scientific Collaboration, Virgo Collaboration, Danilishin, S., Danzmann, K., Heurs, M., Lück, H., Steinmeyer, D., Vahlbruch, H. F. C., Wei, L. I.-W., Willke, B., Wittel, H., Aufmuth, P., Bisht, A., Kaufer, S., Lough, J., Sawadsky, A., Schütte, D., Wimmer, M. H., Winkler, W., ... Wu, D. S. (2017). First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 96(12), Artikel 122004. https://doi.org/10.1103/PhysRevD.96.122004
The LIGO Scientific Collaboration (2017). First search for gravitational waves from known pulsars with Advanced LIGO. The Astrophysical Journal, 851(1). https://doi.org/10.3847/1538-4357/aa677f; 10.3847/1538-4357/aa9aee
The LIGO Scientific Collaboration, Virgo Collaboration, Danilishin, S., Danzmann, K., Heurs, M., Lück, H., Steinmeyer, D., Vahlbruch, H. F. C., Wei, L.-W., Wittel, H., Aufmuth, P., Kaufer, S., Bisht, A., Bode, N., Lough, J., Schütte, D., Sawadsky, A., Wu, D. S., Wimmer, M. H., ... Woehler, J. (2017). Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 95(12), Artikel 122003. https://doi.org/10.1103/PhysRevD.95.122003, https://doi.org/10.15488/12008
2016
Aasi, J., Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R. X., Adya, V. B., Affeldt, C., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O. D., Ain, A., Brown, D. A., ... Sawadsky, A. (2016). Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 93(4), Artikel 042006. https://doi.org/10.1103/PhysRevD.93.042006, https://doi.org/10.15488/12017
Beck, M., Hübner, J., Oestreich, M., Bieker, S., Henn, T., Kiessling, T., Ossau, W., & Molenkamp, L. W. (2016). Thermodynamic origin of the slow free exciton photoluminescence rise in GaAs. Physical Review B, 93(8), Artikel 081204. https://doi.org/10.1103/PhysRevB.93.081204
Bockhorn, L., Velieva, A., Hakim, S., Wagner, T., Rugeramigabo, E. P., Schuh, D., Reichl, C., Wegscheider, W., & Haug, R. J. (2016). Influence of oval defects on transport properties in high-mobility two-dimensional electron gases. Applied physics letters, 108(9), Artikel 092103. https://doi.org/10.1063/1.4942886
Bredemeier, D., Walter, D. C., Herlufsen, S., & Schmidt, J. (2016). Lifetime degradation and regeneration in multicrystalline silicon under illumination at elevated temperature. AIP Advances, 6(3), Artikel 035119. https://doi.org/10.1063/1.4944839
Bredemeier, D., Walter, D. C., Herlufsen, S., & Schmidt, J. (2016). Measures for eliminating light-induced lifetime degradation in multicrystalline silicon. In Proc. 32nd European Photovoltaic Solar Energy Conf., Munich, Germany
Bredemeier, D., Walter, D. C., Herlufsen, S., & Schmidt, J. (2016). Understanding the light-induced lifetime degradation and regeneration in multicrystalline silicon. Energy Procedia, 92, 773-778. https://doi.org/10.1016/j.egypro.2016.07.060, https://doi.org/10.15488/1196
Brendel, R., Dullweber, T., Peibst, R., Kranz, C., Merkle, A., & Walter, D. (2016). Breakdown of the efficiency gap to 29% based on experimental input data and modeling. Progress in Photovoltaics: Research and Applications, 24(12), 1475-1486. https://doi.org/10.1002/pip.2696
Brendel, R., & Peibst, R. (2016). Contact Selectivity and Efficiency in Crystalline Silicon Photovoltaics. IEEE journal of photovoltaics, 6(6), 1413-1420. Artikel 7565514. https://doi.org/10.1109/JPHOTOV.2016.2598267
Chen, Y., Zhang, Y., Zhang, L., Ding, F., & Schmidt, O. G. (2016). Scalable single crystalline PMN-PT nanobelts sculpted from bulk for energy harvesting. Nano Energy, 31, 239-246. https://doi.org/10.1016/j.nanoen.2016.11.040
Dullweber, T., Wehmeier, N., Nowack, A., Brendemühl, T., Kajari-Schröder, S., & Brendel, R. (2016). Industrial bifacial n-type silicon solar cells applying a boron co-diffused rear emitter and an aluminum rear finger grid. Physica Status Solidi (A) Applications and Materials Science, 213(11), 3046-3052. https://doi.org/10.1002/pssa.201600346
Dullweber, T., & Schmidt, J. (2016). Industrial silicon solar cells applying the passivated emitter and rear cell (PERC) concept: a review. IEEE journal of photovoltaics, 6(5), 1366-1381. Artikel 7493618. https://doi.org/10.1109/JPHOTOV.2016.2571627