Publikationen aus dem Institut für Festkörperphysik

Zeige Ergebnisse 101 - 120 von 1199

2023


Thole, L., Ben Kalefa, A., Belke, C., Locmelis, S., Bockhorn, L., Behrens, P., & Haug, R. J. (2023). Long-Persistent Photoconductivity in Transistor Structures Made from Thin ZrS3-Films. ACS Applied Electronic Materials, 5(11), 6286–6291. https://doi.org/10.1021/acsaelm.3c01163
Uhland, D., Dillmann, H., Wang, Y., & Gerhardt, I. (2023). How to build an optical filter with an atomic vapor cell. New journal of physics, 25(12), Artikel 125001. https://doi.org/10.48550/arXiv.2305.00570, https://doi.org/10.1088/1367-2630/ad0fa8
Wan, J., Wang, R., Liu, Z., Zhang, L., Liang, F., Zhou, T., Zhang, S., Zhang, L., Lu, Q., Zhang, C., & Guo, Z. (2023). A Double-Functional Additive Containing Nucleophilic Groups for High-Performance Zn-Ion Batteries. ACS NANO, 17(2), 1610-1621. https://doi.org/10.1021/acsnano.2c11357
Wang, R., Ma, Q., Zhang, L., Liu, Z., Wan, J., Mao, J., Li, H., Zhang, S., Hao, J., Zhang, L., & Zhang, C. (2023). An Aqueous Electrolyte Regulator for Highly Stable Zinc Anode Under −35 to 65 °C. Advanced energy materials, 13(40), Artikel 2302543. https://doi.org/10.1002/aenm.202302543
Wang, W., Tang, Y., Liu, J., Li, H., Wang, R., Zhang, L., Liang, F., Bai, W., Zhang, L., & Zhang, C. (2023). Boosting the zinc storage of a small-molecule organic cathode by a desalinization strategy. Chemical science, 14(34), 9033-9040. https://doi.org/10.1039/d3sc03435f
Wang, Y., Bushmakin, V., Stein, G., Schell, A. W., & Gerhardt, I. (2023). Optical Ramsey Spectroscopy on a Single Organic Molecule. In Proceedings 2023 Conference on Lasers and Electro-Optics: CLEO Artikel FW4J.6 Optica Publishing Group (formerly OSA). https://doi.org/10.1364/CLEO_FS.2023.FW4J.6
Winter, M., Walter, D. C., & Schmidt, J. (2023). Impact of Fast-Firing Conditions on Light- and Elevated-Temperature-Induced Degradation (LeTID) in Ga-Doped Cz-Si. IEEE journal of photovoltaics, 13(6), 849-857. https://doi.org/10.1109/JPHOTOV.2023.3304118
Yang, J. (2023). Development of semiconductor light sources for photonic-enabled quantum communication. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. Leibniz Universität Hannover. https://doi.org/10.15488/13225

2022


An, Z., Zopf, M., & Ding, F. (2022). Strain-Tuning of 2 D Transition Metal Dichalcogenides. In Y. Mei, G. Huang, & X. Li (Hrsg.), Nanomembranes: Materials, Properties, and Applications (S. 413-448). Wiley-VCH Verlag. https://doi.org/10.1002/9783527813933.ch14
Barzel, R., Bruschi, D. E., Schell, A. W., & Laemmerzahl, C. (2022). Observer dependence of photon bunching: The influence of the relativistic redshift on Hong-Ou-Mandel interference. Physical Review D, 105(10), Artikel 105016. https://doi.org/10.48550/arXiv.2202.07950, https://doi.org/10.1103/PhysRevD.105.105016
Cao, X. (2022). Growth and characterization of epitaxial quantum dots: from visible tot telecom wavelength range. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. Leibniz Universität Hannover.
Cao, X., Zhang, Y., Ma, C., Wang, Y., Brechtken, B., Haug, R. J., Rugeramigabo, E. P., Zopf, M., & Ding, F. (2022). Local droplet etching on InAlAs/InP surfaces with InAl droplets. AIP Advances, 12(5), Artikel 055302. https://doi.org/10.1063/5.0088012
Chattopadhyay, S., Munya, V., Kumar, R., Pal, D., Bandyopadhyay, S., Ghosh, A., Yogi, P., Koch, J., & Pfnür, H. (2022). F4-TCNQ on Epitaxial Bi-Layer Graphene: Concentration- and Orientation-Dependent Charge Transfer at the Interface. LANGMUIR, 38(51), 16067-16072. https://doi.org/10.1021/acs.langmuir.2c02676
Dani, O., Hussein, R., Bayer, J. C., Kohler, S., & Haug, R. J. (2022). Temperature-dependent broadening of coherent current peaks in InAs double quantum dots. Communications Physics, 5(1), Artikel 292. https://doi.org/10.1038/s42005-022-01074-z
Fang, W., Meyer auf der Heide, K. M., Zaum, C., Michaelides, A., & Morgenstern, K. (2022). Rapid Water Diffusion at Cryogenic Temperatures through an Inchworm-like Mechanism. Nano letters, 22(1), 340-346. https://doi.org/10.48550/arXiv.2112.13549, https://doi.org/10.1021/acs.nanolett.1c03894
Folchert, N. (2022). Modeling poly-Si/SiOx/c-Si junctions for solar cells. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. Leibniz Universität Hannover. https://doi.org/10.15488/12102
Folchert, N., Bordihn, S., Peibst, R., & Brendel, R. (2022). Modelling the Annealing of Poly-Si/SiOx/c-Si Junctions. In R. Brendel, C. Ballif, S. Dubois, S. Glunz, G. Hahn, J. Poortmans, P. Verlinden, & A. Weeber (Hrsg.), SiliconPV 2021 - 11th International Conference on Crystalline Silicon Photovoltaics Artikel 020006 (AIP Conference Proceedings; Band 2487). American Institute of Physics Inc.. https://doi.org/10.1063/5.0089597
Gewohn, T., Bredemeier, D., Schinke, C., Lim, B., & Brendel, R. (2022). Improved Calculation of the Power Gain of Vertical PV Modules due to Ground Reflection Using the Ground View Factor. IEEE journal of photovoltaics, 12(6), 1567-1575. https://doi.org/10.1109/JPHOTOV.2022.3207312
Goudarzi, K., Maragheh, H. G., & Lee, M. (2022). Calculation of the Berry curvature and Chern number of topological photonic crystals. Journal of the Korean Physical Society, 81(5), 386-390. https://doi.org/10.1007/s40042-022-00530-x, https://doi.org/10.1007/s40042-022-00547-2
Graf, R. T., Schlosser, A., Zámbó, D., Schlenkrich, J., Rusch, P., Chatterjee, A., Pfnür, H., & Bigall, N. C. (2022). Interparticle Distance Variation in Semiconductor Nanoplatelet Stacks. Advanced functional materials, 32(24), Artikel 2112621. https://doi.org/10.1002/adfm.202112621