Publikationen der AG Zhang

Zeige Ergebnisse 1 - 20 von 35

2024


Bettels, F., Lin, Z., Li, Z., Shao, Y., Ding, F., Liu, S., Zhang, L., & Liu, Y. (2024). Recent Advances in Transition-Metal-Based Catalytic Material for Room-Temperature Sodium–Sulfur Batteries. Advanced functional materials, 34(5), Artikel 2302626. https://doi.org/10.1002/adfm.202302626
Lin, Z., Bettels, F., Li, T., Satheesh, S. K., Liu, Y., Zhang, C., Ding, F., & Zhang, L. (2024). Constructing LiCl-Rich Solid Electrolyte Interphase by High Amine-Containing 1,2,4,5-Benzenetetramine Tetrahydrochloride Additive. Advanced electronic materials, 10(4), Artikel 2300772. https://doi.org/10.1002/aelm.202300772
Liu, Z., Wang, R., Ma, Q., Wan, J., Zhang, S., Zhang, L., Li, H., Luo, Q., Wu, J., Zhou, T., Mao, J., Zhang, L., Zhang, C., & Guo, Z. (2024). A Dual-Functional Organic Electrolyte Additive with Regulating Suitable Overpotential for Building Highly Reversible Aqueous Zinc Ion Batteries. Advanced functional materials, 34(5), Artikel 2214538. https://doi.org/10.1002/adfm.202214538

2023


Liu, Z., Wang, R., Gao, Y., Zhang, S., Wan, J., Mao, J., Zhang, L., Li, H., Hao, J., Li, G., Zhang, L., & Zhang, C. (2023). Low-Cost Multi-Function Electrolyte Additive Enabling Highly Stable Interfacial Chemical Environment for Highly Reversible Aqueous Zinc Ion Batteries. Advanced functional materials, 33(49), Artikel 2308463. https://doi.org/10.1002/adfm.202308463
Liu, Y., Lin, Z., Bettels, F., Li, Z., Xu, J., Zhang, Y., Li, X., Ding, F., Liu, S., & Zhang, L. (2023). Molybdenum-Based Catalytic Materials for Li–S Batteries: Strategies, Mechanisms, and Prospects. Advanced Energy and Sustainability Research, 4(3), Artikel 2200145. https://doi.org/10.1002/aesr.202200145, https://doi.org/10.15488/13382
Wan, J., Wang, R., Liu, Z., Zhang, L., Liang, F., Zhou, T., Zhang, S., Zhang, L., Lu, Q., Zhang, C., & Guo, Z. (2023). A Double-Functional Additive Containing Nucleophilic Groups for High-Performance Zn-Ion Batteries. ACS NANO, 17(2), 1610-1621. https://doi.org/10.1021/acsnano.2c11357
Wang, R., Ma, Q., Zhang, L., Liu, Z., Wan, J., Mao, J., Li, H., Zhang, S., Hao, J., Zhang, L., & Zhang, C. (2023). An Aqueous Electrolyte Regulator for Highly Stable Zinc Anode Under −35 to 65 °C. Advanced energy materials, 13(40), Artikel 2302543. https://doi.org/10.1002/aenm.202302543
Wang, W., Tang, Y., Liu, J., Li, H., Wang, R., Zhang, L., Liang, F., Bai, W., Zhang, L., & Zhang, C. (2023). Boosting the zinc storage of a small-molecule organic cathode by a desalinization strategy. Chemical science, 14(34), 9033-9040. https://doi.org/10.1039/d3sc03435f

2022


Liu, L., Huang, S., Shi, W., Sun, X., Pang, J., Lu, Q., Yang, Y., Xi, L., Deng, L., Oswald, S., Yin, Y., Liu, L., Ma, L., Schmidt, O. G., Shi, Y., & Zhang, L. (2022). Single “Swiss-roll” microelectrode elucidates the critical role of iron substitution in conversion-type oxides. Science advances, 8(51), Artikel eadd6596. https://doi.org/10.1126/sciadv.add6596
Liu, Y., Ma, S., Rosebrock, M., Rusch, P., Barnscheidt, Y., Wu, C., Nan, P., Bettels, F., Lin, Z., Li, T., Ge, B., Bigall, N. C., Pfnür, H., Ding, F., Zhang, C., & Zhang, L. (2022). Tungsten Nanoparticles Accelerate Polysulfides Conversion: A Viable Route toward Stable Room-Temperature Sodium–Sulfur Batteries. Advanced science, 9(11), Artikel 2105544. https://doi.org/10.1002/advs.202105544
Pang, Y., Li, H., Zhang, S., Ma, Q., Peng, X., Wang, R., Zhai, Y., Li, H., Kang, H., Liu, Y., Zhang, L., Zhang, L., Zhou, T., & Zhang, C. (2022). Conjugated porous polyimide poly(2,6-diaminoanthraquinone) benzamide with good stability and high-performance as a cathode for sodium ion batteries. Journal of Materials Chemistry A, 10(3), 1514–1521. https://doi.org/10.1039/d1ta06384g
Zhang, C., Li, H., Zeng, X., Xi, S., Wang, R., Zhang, L., Liang, G., Davey, K., Liu, Y., Zhang, L., Zhang, S., & Guo, Z. (2022). Accelerated Diffusion Kinetics in ZnTe/CoTe2 Heterojunctions for High Rate Potassium Storage. Advanced energy materials, 12(41), Artikel 2202577. https://doi.org/10.1002/aenm.202202577

2021


Liu, Y., Barnscheidt, Y., Peng, M., Bettels, F., He, T., Ding, F., & Zhang, L. (2021). A Biomass‐Based Integral Approach Enables Li‐S Full Pouch Cells with Exceptional Power Density and Energy Density. Advanced science, 8(14), 2101182. Artikel 2101182. https://doi.org/10.1002/advs.202101182
Liu, Y., Chatterjee, A., Rusch, P., Wu, C., Nan, P., Peng, M., Bettels, F., Li, T., Ma, C., Zhang, C., Ge, B., Bigall, N.-C., Pfnur, H., Ding, F., & Zhang, L. (2021). Monodisperse Molybdenum Nanoparticles as Highly Efficient Electrocatalysts for Li-S Batteries. ACS NANO, 15(9), 15047-15056. https://doi.org/10.15488/11333, https://doi.org/10.1021/acsnano.1c05344
Liu, B., Sun, X., Liao, Z., Lu, X., Zhang, L., & Hao, G.-P. (2021). Nitrogen and boron doped carbon layer coated multiwall carbon nanotubes as high performance anode materials for lithium ion batteries. Scientific reports, 11, Artikel 5633. https://doi.org/10.1038/s41598-021-85187-5

2020


Liu, Y., Zhen, Y., Li, T., Bettels, F., He, T., Peng, M., Liang, Y., Ding, F., & Zhang, L. (2020). High‐Capacity, Dendrite‐Free, and Ultrahigh‐Rate Lithium‐Metal Anodes Based on Monodisperse N‐Doped Hollow Carbon Nanospheres. Small, 16(44), Artikel 2004770. https://doi.org/10.1002/smll.202004770
Liu, Y., Ma, S., Liu, L., Koch, J., Rosebrock, M., Li, T., Bettels, F., He, T., Pfnür, H., Bigall, N. C., Feldhoff, A., Ding, F., & Zhang, L. (2020). Nitrogen Doping Improves the Immobilization and Catalytic Effects of Co9S8 in Li-S Batteries. Advanced functional materials, 30(32), Artikel 2002462. https://doi.org/10.1002/adfm.202002462
Wang, Z., Li, Y., Huang, S., Liu, L., Wang, Y., Jin, J., Kong, D., Zhang, L., & Schmidt, O. G. (2020). PVD customized 2D porous amorphous silicon nanoflakes percolated with carbon nanotubes for high areal capacity lithium ion batteries. Journal of Materials Chemistry A, 8(9), 4836-4843. https://doi.org/10.1039/c9ta12923e

2019


Huang, S., Liu, L., Wang, Y., Shang, Y., Zhang, L., Wang, J., Zheng, Y., Schmidt, O. G., & Yang, H. Y. (2019). Elucidating the reaction kinetics of lithium-sulfur batteries by operando XRD based on an open-hollow S@MnO2 cathode. Journal of Materials Chemistry A, 7(12), 6651-6658. https://doi.org/10.1039/c9ta00199a

2018


Huang, S., Liu, L., Zheng, Y., Wang, Y., Kong, D., Zhang, Y., Shi, Y., Zhang, L., Schmidt, O. G., & Yang, H. Y. (2018). Efficient Sodium Storage in Rolled-Up Amorphous Si Nanomembranes. Advanced materials, 30(20), Artikel 1706637. https://doi.org/10.1002/adma.201706637