2023
Bettels, F., Lin, Z., Li, Z., Shao, Y., Ding, F., Liu, S., Zhang, L., & Liu, Y. (2023). Recent Advances in Transition-Metal-Based Catalytic Material for Room-Temperature Sodium–Sulfur Batteries. Advanced functional materials. https://doi.org/10.1002/adfm.202302626
Liu, Z., Wang, R., Ma, Q., Wan, J., Zhang, S., Zhang, L., Li, H., Luo, Q., Wu, J., Zhou, T., Mao, J., Zhang, L., Zhang, C., & Guo, Z. (Accepted/In press). A Dual-Functional Organic Electrolyte Additive with Regulating Suitable Overpotential for Building Highly Reversible Aqueous Zinc Ion Batteries. Advanced functional materials. https://doi.org/10.1002/adfm.202214538
Liu, Z., Wang, R., Gao, Y., Zhang, S., Wan, J., Mao, J., Zhang, L., Li, H., Hao, J., Li, G., Zhang, L., & Zhang, C. (2023). Low-Cost Multi-Function Electrolyte Additive Enabling Highly Stable Interfacial Chemical Environment for Highly Reversible Aqueous Zinc Ion Batteries. Advanced functional materials. https://doi.org/10.1002/adfm.202308463
Liu, Y., Lin, Z., Bettels, F., Li, Z., Xu, J., Zhang, Y., Li, X., Ding, F., Liu, S., & Zhang, L. (2023). Molybdenum-Based Catalytic Materials for Li–S Batteries: Strategies, Mechanisms, and Prospects. Advanced Energy and Sustainability Research, 4(3), [2200145]. https://doi.org/10.1002/aesr.202200145, https://doi.org/10.15488/13382
Wan, J., Wang, R., Liu, Z., Zhang, L., Liang, F., Zhou, T., Zhang, S., Zhang, L., Lu, Q., Zhang, C., & Guo, Z. (2023). A Double-Functional Additive Containing Nucleophilic Groups for High-Performance Zn-Ion Batteries. ACS NANO, 17(2). https://doi.org/10.1021/acsnano.2c11357
Wang, R., Ma, Q., Zhang, L., Liu, Z., Wan, J., Mao, J., Li, H., Zhang, S., Hao, J., Zhang, L., & Zhang, C. (2023). An Aqueous Electrolyte Regulator for Highly Stable Zinc Anode Under −35 to 65 °C. Advanced energy materials. https://doi.org/10.1002/aenm.202302543
2022
Liu, L., Huang, S., Shi, W., Sun, X., Pang, J., Lu, Q., Yang, Y., Xi, L., Deng, L., Oswald, S., Yin, Y., Liu, L., Ma, L., Schmidt, O. G., Shi, Y., & Zhang, L. (2022). Single “Swiss-roll” microelectrode elucidates the critical role of iron substitution in conversion-type oxides. Science advances, 8(51), [eadd6596]. https://doi.org/10.1126/sciadv.add6596
Liu, Y., Ma, S., Rosebrock, M., Rusch, P., Barnscheidt, Y., Wu, C., Nan, P., Bettels, F., Lin, Z., Li, T., Ge, B., Bigall, N. C., Pfnür, H., Ding, F., Zhang, C., & Zhang, L. (2022). Tungsten Nanoparticles Accelerate Polysulfides Conversion: A Viable Route toward Stable Room-Temperature Sodium–Sulfur Batteries. Advanced science, 9(11), [2105544]. https://doi.org/10.1002/advs.202105544
Pang, Y., Li, H., Zhang, S., Ma, Q., Peng, X., Wang, R., Zhai, Y., Li, H., Kang, H., Liu, Y., Zhang, L., Zhang, L., Zhou, T., & Zhang, C. (2022). Conjugated porous polyimide poly(2,6-diaminoanthraquinone) benzamide with good stability and high-performance as a cathode for sodium ion batteries. Journal of Materials Chemistry A, 10(3), 1514–1521. https://doi.org/10.1039/d1ta06384g
Zhang, C., Li, H., Zeng, X., Xi, S., Wang, R., Zhang, L., Liang, G., Davey, K., Liu, Y., Zhang, L., Zhang, S., & Guo, Z. (2022). Accelerated Diffusion Kinetics in ZnTe/CoTe2 Heterojunctions for High Rate Potassium Storage. Advanced energy materials, 12(41), [2202577]. https://doi.org/10.1002/aenm.202202577
2021
Liu, Y., Barnscheidt, Y., Peng, M., Bettels, F., He, T., Ding, F., & Zhang, L. (2021). A Biomass‐Based Integral Approach Enables Li‐S Full Pouch Cells with Exceptional Power Density and Energy Density. Advanced science, 8(14), 2101182. [2101182]. https://doi.org/10.1002/advs.202101182
Liu, Y., Chatterjee, A., Rusch, P., Wu, C., Nan, P., Peng, M., Bettels, F., Li, T., Ma, C., Zhang, C., Ge, B., Bigall, N-C., Pfnur, H., Ding, F., & Zhang, L. (2021). Monodisperse Molybdenum Nanoparticles as Highly Efficient Electrocatalysts for Li-S Batteries. ACS NANO, 15(9), 15047-15056. https://doi.org/10.1021/acsnano.1c05344
Liu, B., Sun, X., Liao, Z., Lu, X., Zhang, L., & Hao, G-P. (2021). Nitrogen and boron doped carbon layer coated multiwall carbon nanotubes as high performance anode materials for lithium ion batteries. Scientific reports, 11, [5633]. https://doi.org/10.1038/s41598-021-85187-5
2020
Liu, Y., Zhen, Y., Li, T., Bettels, F., He, T., Peng, M., Liang, Y., Ding, F., & Zhang, L. (2020). High‐Capacity, Dendrite‐Free, and Ultrahigh‐Rate Lithium‐Metal Anodes Based on Monodisperse N‐Doped Hollow Carbon Nanospheres. Small, 16(44), [2004770]. https://doi.org/10.1002/smll.202004770
Liu, Y., Ma, S., Liu, L., Koch, J., Rosebrock, M., Li, T., Bettels, F., He, T., Pfnür, H., Bigall, N. C., Feldhoff, A., Ding, F., & Zhang, L. (2020). Nitrogen Doping Improves the Immobilization and Catalytic Effects of Co9S8 in Li-S Batteries. Advanced functional materials, 30(32), [2002462]. https://doi.org/10.1002/adfm.202002462
Wang, Z., Li, Y., Huang, S., Liu, L., Wang, Y., Jin, J., Kong, D., Zhang, L., & Schmidt, O. G. (2020). PVD customized 2D porous amorphous silicon nanoflakes percolated with carbon nanotubes for high areal capacity lithium ion batteries. Journal of Materials Chemistry A, 8(9), 4836-4843. https://doi.org/10.1039/c9ta12923e
2019
Huang, S., Liu, L., Wang, Y., Shang, Y., Zhang, L., Wang, J., Zheng, Y., Schmidt, O. G., & Yang, H. Y. (2019). Elucidating the reaction kinetics of lithium-sulfur batteries by operando XRD based on an open-hollow S@MnO2 cathode. Journal of Materials Chemistry A, 7(12), 6651-6658. https://doi.org/10.1039/c9ta00199a
2018
Huang, S., Liu, L., Zheng, Y., Wang, Y., Kong, D., Zhang, Y., Shi, Y., Zhang, L., Schmidt, O. G., & Yang, H. Y. (2018). Efficient Sodium Storage in Rolled-Up Amorphous Si Nanomembranes. Advanced materials, 30(20), [1706637]. https://doi.org/10.1002/adma.201706637
2017
Huang, S., Zhang, L., Liu, L., Liu, L., Li, J., Hu, H., Wang, J., Ding, F., & Schmidt, O. G. (2017). Rationally engineered amorphous TiOx/Si/TiOx nanomembrane as an anode material for high energy lithium ion battery. Energy Storage Materials, 12, 23-29. https://doi.org/10.1016/j.ensm.2017.11.010
Huang, S., Zhang, L., Lu, X., Liu, L., Liu, L., Sun, X., Yin, Y., Oswald, S., Zou, Z., Ding, F., & Schmidt, O. G. (2017). Tunable Pseudocapacitance in 3D TiO2-δ Nanomembranes Enabling Superior Lithium Storage Performance. ACS NANO, 11(1), 821-830. https://doi.org/10.1021/acsnano.6b07274, https://doi.org/10.1021/ACSNANO.6B07274